Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.C.A.

SEM	CATEGORY		COMPONENT	COURSE CODE	COURSE TITLE		
III	PART – III		ELECTIVE GENERIC-3	U23CA3A3	DISCRETE MATHEMATICS		
Date & Session: 1			4.11.2024 / AN	Time : 3 hours	Maximum: 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.				
CO1	K1	1.	Let R be a relation from A a) R ⁻¹ b) I (R)	to B. The inverse of R c) R (I)	is denoted by d) R*R		
CO1	K2	2.	Relation R _R is called a) Reverse Relation c) Reflexive Closure	 b) Reflexive Re d) Reverse Clos	lation sure		
CO2	K1	3.	The Composition of two fu a) Commutative c) Distributive	nction is b) Associative d) None of the	above		
CO2	K2	4.	If every element of A id as a) Identity Function c) Constant Function	signed to the same ele b) Onto Funct d) Inverse Fur	ment of B is tion nction		
CO3	K1	5.	Which of the following is r a) ^ b) v	not in binary logical op c) ¬	berator? d) \rightarrow		
CO3	K2	6.	The Last Column of the tr a) Tautologies c) Implication	uth table is T then it i b) Contradictic d) Inverse	s called on		
CO4	K1	7.	Matrix of order m by n is x a) $n \times m$ b) $m \times n$	written as c) n / m	d) m / n		
CO4	K2	8.	is said to be or a) A ^O b) A ^D	rthogonal matrix. c) A ^x	d) A ^T		
CO5	K1	9.	associates a va a) Directed graph c) Weighted graph	lue (weight) with every b) Un Directed d) Un Weighte	r edge in the graph. l graph d graph		
CO5	K2	10.	A graph which contains or a) Null graph c) Directed graph	nly isolated node is ca b) Complete gr d) UnDirected	lled a aph graph		
Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{Answer}} (5 \text{ X 5} = 25 \text{ Marks})$ Answer <u>ALL</u> Questions choosing either (a) or (b)				
CO1	КЗ	11a.	Find the composition of the R ₁ ={ $(1,2),(1,6),(2,4),(3,4),(3,4),(3,4),(3,4),(3,4),(4,2),(4,2),(6,2),(8,4),(1,2),$	ne relations. 8,6),(3,8)} x)}			
CO1	К3	11b.	Find the reflexive closure $A=\{1,2,3\}$.	of the relation R={(1,1)	,(1,2),(2,1),(3,2)} on the set		

CO2	K3	12a.	Write the function f(x)=x+1 for one to one.	
			(OR)	
CO2	K3	12b.	Let $f:R->R$ be defined by $f(x) = x+1$ and $g:R->R$ be defined as	
			$g(x) = 2x^2 + 3$. Find f o g and g of. Is fog=gof?	
CO3	K4	13a.	Discover the negation of the following propositions. i) Today is Sunday ii) It is a rainy day iii) If it snows, Mani does not drive the car.	
CO3	K4	13b.	(OR) Comment that the proposition p v ~(p^q) is tautology.	
CO4	K4	14a.	Examine the determinant of the matrix	
			$\begin{pmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$	
CO4	K4	14h	(OR)	
		110.	Focus that the matrix $A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ is involutory.	
CO5	К5	15a.	Prove the theorem a simple graph with n>=2 vertices contains at least two vertices of the same degree.	
CO5	K5	15b.	נטאן) Evaluate the number of edges of a 4 regular graph with 6 vertices.	

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C}{\text{Answer}} (5 \times 8 = 40 \text{ Marks})$ Answer <u>ALL</u> Questions choosing either (a) or (b)	
CO1	K3	16a.	Determine the Classification of Relation with example.	
CO1	K3	16b.	Let A= $\{1,2,3\}$, B= $\{a,b\}$ and R= $\{(1,a),(2,b),(3,a)\}$, Determine M _R in tabular form and in matrix forms.	
CO2	K4	17a.	Analyse types of function with example. (OR)	
CO2	K4	17b.	Let X={a,b,c}. Define f: X->X such that f={(a,b),(b,a),(c,c)}. Determine i) f ⁻¹ ii) f ² iii) f ³ ii) f ⁴	
CO3	K4	18a.	Basic set of logical operators.	
CO3	K4	18b.	Construct the truth table i) $(p^q)V(p^r)$ ii) $(p \vee q)v(p \wedge q)$	
CO4	К5	19a.	Prove that $(AB)^{T} = B^{T}A^{T}$ $A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{pmatrix} B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$	
CO4	К5	19b.	(OR) Prove that A ³ -4A ² -3A+11I = 0 where $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{pmatrix}$	
CO5	K5	20a.	Justify that the maximum number of edges in a simple undirected graph with n vertices is $n(n-1)/2$.	
CO5	K5	20b.	Predict the types of graphs with example.	